2 research outputs found

    Evaluation of Feature Selection Techniques for Breast Cancer Risk Prediction

    Get PDF
    This study evaluates several feature ranking techniques together with some classifiers based on machine learning to identify relevant factors regarding the probability of contracting breast cancer and improve the performance of risk prediction models for breast cancer in a healthy population. The dataset with 919 cases and 946 controls comes from the MCC-Spain study and includes only environmental and genetic features. Breast cancer is a major public health problem. Our aim is to analyze which factors in the cancer risk prediction model are the most important for breast cancer prediction. Likewise, quantifying the stability of feature selection methods becomes essential before trying to gain insight into the data. This paper assesses several feature selection algorithms in terms of performance for a set of predictive models. Furthermore, their robustness is quantified to analyze both the similarity between the feature selection rankings and their own stability. The ranking provided by the SVM-RFE approach leads to the best performance in terms of the area under the ROC curve (AUC) metric. Top-47 ranked features obtained with this approach fed to the Logistic Regression classifier achieve an AUC = 0.616. This means an improvement of 5.8% in comparison with the full feature set. Furthermore, the SVM-RFE ranking technique turned out to be highly stable (as well as Random Forest), whereas relief and the wrapper approaches are quite unstable. This study demonstrates that the stability and performance of the model should be studied together as Random Forest and SVM-RFE turned out to be the most stable algorithms, but in terms of model performance SVM-RFE outperforms Random Forest.The study was partially funded by the “Accion Transversal del Cancer”, approved on the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III-FEDER (PI08/1770, PI08/0533, PI08/1359, PS09/00773, PS09/01286, PS09/01903, PS09/02078, PS09/01662, PI11/01403, PI11/01889, PI11/00226, PI11/01810, PI11/02213, PI12/00488, PI12/00265, PI12/01270, PI12/00715, PI12/00150), by the Fundación Marqués de Valdecilla (API 10/09), by the ICGC International Cancer Genome Consortium CLL, by the Junta de Castilla y León (LE22A10-2), by the Consejería de Salud of the Junta de Andalucía (PI-0571), by the Conselleria de Sanitat of the Generalitat Valenciana (AP 061/10), by the Recercaixa (2010ACUP 00310), by the Regional Government of the Basque Country by European Commission grants FOOD-CT- 2006-036224- HIWATE, by the Spanish Association Against Cancer (AECC) Scientific Foundation, by the The Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Furthermore, at the Public Health Laboratory from Gipuzkoa and the Basque Biobank. Furthermore, sample collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d’Oncologia de Catalunya (XBTC). Biological samples were stored at the “Biobanco La Fe” which is supported by Instituto de Salud Carlos III (RD 09 0076/00021) and FISABIO biobanking, which is supported by Instituto de Salud Carlos III (RD09 0076/00058).S
    corecore